Adversarial Sequential Decision Making

Part 2: Training Time Attacks
Outline

• Poisoning: from supervised learning to RL
• Open-loop control: simulating another MDP
• Closed-loop control
• Forced exploration in unknown MDP
• Backdoor RL
Outline

• Poisoning: from supervised learning to RL
 • Open-loop control: simulating another MDP
 • Closed-loop control
 • Forced exploration in unknown MDP
 • Backdoor RL
Target Policy

• Deterministic policy $\pi : S \rightarrow A$

• Target policy $\pi^\dagger \neq \pi^*$ (the optimal policy for the underlying MDP)

• [Definition] Training time RL attack:
 • Manipulate RL agent’s learning experience
 • … so the RL agent learns π^\dagger
 • … optionally minimize manipulation magnitude.
Reduction to Supervised Learning

- Training set poisoning in supervised learning:
 - Manipulating training set \((x, y)_{1:n}\)
 - … so a supervised learner adopts predictor \(f^\dagger : X \mapsto Y\)
 - For example, set \(y_i = f^\dagger(x_i), \forall i \in [n]\)
 - Same attack? \(X \rightarrow S, Y \rightarrow A, f \rightarrow \pi\)
Behavior Cloning

- Works on behavior cloning agent!

- Input: $s_0, a_0, s_1, a_1, \ldots$

 Behavior cloning: $\hat{\pi} = \text{arg max}_{\pi \in \Pi} \sum_{i=1}^{n} \log \pi(a_i | s_i)$

- Attack: set $a_i^\dagger = \pi^\dagger(s_i), \forall i$

- But: most RL agents do no work like this.
General Training Time Attack Protocol

- Environment draws initial state $s_0 \sim \mu$, agent perceives s_0^\dagger

- For $t = 0, 1, \ldots$
 - Agent chooses action a_t
 - Environment receives a_t^\dagger, generates r_t, s_{t+1}
 - Agent perceives $r_t^\dagger, s_{t+1}^\dagger$

red=possible attacker manipulations
“Targeted vs. Non-Targeted”

- Targeted attack: force a specific π^\dagger

- Non-targeted attack: make agent suffer in value $V^\hat{\pi}(\mu)$

- Conceptually still targeted: $\pi^\dagger \in \Pi := \{ \pi : V^\pi(\mu) \leq c \}$

- Heuristic “flipping reward” attack $r_t^\dagger := - r_t$

 - This is $\pi^\dagger \in \arg\min_{\pi \in \Pi} V^\pi(\mu)$

- Optionally with early stopping
Outline

• Poisoning: from supervised learning to RL

• Open-loop control: simulating another MDP
 • With reward poisoning r^+

• Closed-loop control

• Forced exploration in unknown MDP

• Backdoor RL
Open-Loop Control

• Attacker knows:
 • The environment MDP \(M = (S, A, R, P, \mu, \gamma \text{ or } H) \)
 • Agent runs any reasonable RL algorithm

• Open-loop control:
 • not interested in agent’s internal state (e.g. Q-table \(Q_t \))
 • Instead, simulate another MDP \(M^\dagger = (S, A, R^\dagger, P, \mu, \gamma \text{ or } H) \) such that \(\pi^\dagger \) is the optimal policy under \(M^\dagger \)
 • Trust agent will eventually learn \(\pi^\dagger \)
Target Policy Uniqueness

• \(\pi \) is an optimal policy of \(M^\dagger \) iff
\[
A_{M^\dagger}^\pi (s, a) := Q_{M^\dagger}^\pi(s, a) - V_{M^\dagger}^\pi(s) \leq 0, \forall s, a
\]

• An MDP can have multiple optimal policies; Attacker wants to ensure \(\pi^\dagger \)
being learned

• \(\pi^\dagger \) has to be the unique optimal policy of \(M^\dagger \).

• Sufficient condition (\(\epsilon \)-robust policy) for uniqueness: Fix \(\epsilon > 0 \),
\[
A_{M^\dagger}^\pi^\dagger (s, a) \leq - \epsilon, \forall s, \forall a \neq \pi^\dagger(s)
\]
Reward Poisoning: r^\dagger

- Turns out any target policy π^\dagger is feasible with attack, if:
 - Reward manipulate is unbounded $r^\dagger \in \mathbb{R}$; and
 - Reward is a function of (s, a), not just s
Bijection between \(R \) and \(Q^* \)

- [Theorem (discounted MDP)] The following is a bijection \(\mathbb{R}^{SA} \leftrightarrow \mathbb{R}^{SA} \)

 - The unique fixed point of \(\mathcal{T} Q(s, a) = R(s, a) + \gamma \mathbb{E}_{s' \sim P_{sa}} \max_{a'} Q(s', a') \)

 - \(R(s, a) = Q(s, a) - \gamma \mathbb{E}_{s' \sim P_{sa}} \max_{a'} Q(s', a') \)
Any Target Policy π^{\dagger} is Feasible

- Manually pick any Q^{\dagger} that satisfies $A_{M^{\dagger}}(s, a) \leq -\epsilon, \forall s, \forall a \neq \pi^{\dagger}(s)$, e.g.
 - $Q^{\dagger}(s, \pi^{\dagger}(s)) = \epsilon, \forall s$
 - $Q^{\dagger}(s, a) = 0$ for all other actions a
 - Calculate $r^{\dagger}(s, a) = Q^{\dagger}(s, a) - \gamma \mathbb{E}_{s' \sim P_{sa}} \max_{a'} Q^{\dagger}(s', a')$
Reward Poisoning Attack Protocol

- Environment draws initial state $s_0 \sim \mu$

- For $t = 0,1,...$
 - Agent chooses action a_t
 - Environment generates $r_t(s_t, a_t), s_{t+1}$
 - Agent perceives $r^\dagger_t(s, a)$ defined on previous slide, and s^\dagger_{t+1}
Remarks

- The MDP seen by agent is \(M^\dagger = (S, A, R^\dagger, P, \mu, \gamma) \)

- Some \(\pi^\dagger \) infeasible if rewards bounded in \([0,1]\), or independent of \(a \)

- There are many choices of \(Q^\dagger \) and thus \(R^\dagger \) for a given \(\pi^\dagger \)

 - Should the attacker prefer some \(R^\dagger \) over others?
Attack Cost

- The environment MDP was $M = (S, A, R, P, \mu, \gamma)$

- Now agent sees $M^\dagger = (S, A, R^\dagger, P, \mu, \gamma)$

- Reasonable for the attacker to keep R^\dagger close to R for stealthiness and less effort (i.e. attack cost)

- Close in what sense?
Attack Cost 1: Uniform Occupancy

- Popular choice: $\| R^\dagger - R \|_p = \left(\sum_{s,a} (R^\dagger_{sa} - R_{sa})^p \right)^{\frac{1}{p}}$

- Attack is a convex optimization problem:

$$\min_{\forall R^\dagger \in \mathbb{R}^{S^A}} \| R^\dagger - R \|_p$$

s.t. $A^{\pi^\dagger}(s, a) \leq -\epsilon, \forall s, a \neq \pi^\dagger(s)$

[HZ]
Attack Cost 1: Uniform Occupancy

- Pros: Convenient. Measures attack cost under a uniform state-action occupancy $d_{\text{unif}}(s, a)$:

$$E_{d_{\text{unif}}}|R^\dagger(s, a) - R(s, a)|^p$$

- Cons: after the attack succeeds, agent will follow π^\dagger and keep visiting state-action pairs under d_{π^\dagger}

 - There can be states $d_{\pi^\dagger}(s, \pi^\dagger(s)) \gg 0$ and $R^\dagger(s, \pi^\dagger(s)) \neq R(s, \pi^\dagger(s))$

- d_{unif} not appropriate if attacker cares about how often it has to attack
Attack Cost 2: Do Not Attack Target Actions

- A variant of uniform occupancy, but do not attack on target actions
- Still convex optimization

\[
\min_{R^\dagger \in \mathbb{R}^{S \times A}} \|R^\dagger - R\|_p
\]

s.t. \(A^\dagger(s, a) \leq -\epsilon, \forall s, a \neq \pi^\dagger(s) \)

\(R^\dagger(s, \pi^\dagger(s)) = R(s, \pi^\dagger(s)), \forall s \)

- [Theorem] Attack with solution above, then both \(\mathbb{E} \left[\frac{1}{T} \sum_t |R^\dagger(s_t, a_t) - R(s_t, a_t)| \right] \) and \(\mathbb{E} \left[\frac{1}{T} \sum_t 1[a_t \neq \pi^\dagger(s_t)] \right] \) are \(\tilde{O} \left(\frac{1}{T} \right) \).
Attack Cost 3: d^{π^\dagger} Occupancy

- Directly minimize cumulative manipulation under π^\dagger:

\[
\min_{R^\dagger \in \mathbb{R}^{SA}} \mathbb{E}_{d^\pi^\dagger} | R^\dagger(s, a) - R(s, a) |
\]

s.t. $A^{\pi^\dagger}(s, a) \leq -\epsilon$, $\forall s, a \neq \pi^\dagger(s)$

(Similar to [ZPC])
Attack Cost 3: d^{π^\dagger} Occupancy

- Implement as linear program

$$\min_{R^\dagger \in \mathbb{R}^{SA}, U} U^{\pi^\dagger}(\mu)$$

s.t. $A^{\pi^\dagger}(s, a) \leq -\epsilon, \forall s, a \neq \pi^\dagger(s)$

$$U^{\pi^\dagger}(s, a) = |R^\dagger(s, a) - R(s, a)| + \gamma \mathbb{E}_{s' \sim P_{sa}} U^{\pi^\dagger}(s', \pi^\dagger(s'))$$

(Similar to [ZPC])
Attack Cost 4: d^{π^b} Behavior Occupancy

- Offline RL from a dataset $(s, a, r, s')_{1:n}$ generated from behavior policy π^b
- Attacker can modify $r_{1:n}$ before learner sees the dataset
- Model based RL: learner estimate \hat{P}, \hat{R} from dataset, then planning
- \hat{P}, \hat{R} induce estimated advantage function \hat{A}, allowing attack
- Importantly, attacker cares about small manipulation on the dataset

[MZSZ]
Attack Cost 4: d^{π^b} Behavior Occupancy

- Dataset was drawn from d^{π^b}, so approximately

$$\min_{R^\dagger \in \mathbb{R}^{SA}} \mathbb{E}_{d^{\pi^b}} | R^\dagger(s, a) - R(s, a) |$$

s.t. $\hat{A}(s, a) \leq -\epsilon, \forall s, a \neq \pi^\dagger(s)$

- This assumes the attacker wants the same $r^\dagger = R^\dagger(s, a)$ value for all instances of the same (s, a) in the dataset

- In practice can relax this constraint and further lower attack cost

[MZSZ]
Recap

• Attacker knows environment MDP

• Attacker can change r_t

• Open-loop control: just simulate another MDP with R^\dagger, so that π^\dagger becomes the ϵ-robust optimal policy

• The optimal R^\dagger depends on which occupancy to measure attack cost
Outline

• Poisoning: from supervised learning to RL

• Open-loop control: simulating another MDP
 • With reward poisoning r^\dagger
 • With action poisoning a^\dagger

• Closed-loop control

• Forced exploration in unknown MDP

• Backdoor RL
Action Poisoning Attack Protocol

- Environment draws initial state $s_0 \sim \mu$

- For $t = 0, 1, \ldots$
 - Agent chooses action a_t
 - Attacker intercepts a_t and sends a_t^\dagger to the environment instead (invisible to agent)
 - Environment generates r_t, s_{t+1} based on a_t^\dagger
 - Agent receives r_t, s_{t+1} and thought they were based on a_t
Action Poisoning Goal and Cost

- Attacker knows the environment MDP $M = (S, A, P, R, \mu, H)$
- Attacker wants to force target policy π^\dagger
- Attack cost = how often attacker has to change a_t to a_t^\dagger
Action Poisoning Algorithm

- For each state s, attacker computes the worst action under M and π^\dagger:

$$a_o(s) = \arg \min_a Q^{\pi^\dagger}(s, a)$$

- Requirement on (M, π^\dagger): $\forall s : \pi^\dagger(s) \neq a_o(s)$

- Attack algorithm: if agent $a_t = \pi^\dagger(s_t)$ do not attack; otherwise set $a_t^\dagger = a_o(s_t)$
Action Poisoning Algorithm

• [Lemma] Agent thinks π^\dagger is the optimal policy

• Define $\Delta_{min} = \min_s \left(V^{\pi^\dagger}(s) - \min_a Q^{\pi^\dagger}(s, a) \right)$

• [Theorem] Both $\mathbb{E} \left[\sum_t 1[a_t \neq \pi^\dagger(s_t)] \right]$ and $\mathbb{E} \left[\sum_t 1[a_t \neq a_t^\dagger] \right]$ are upperbounded by Reg/Δ_{min}, where Reg is the regret of the RL algorithm
Recap

• Poisoning: from supervised learning to RL

• Open-loop control: simulating another MDP
 • May poison r^\dagger, a^\dagger, or transition s_{t+1}^\dagger [RRDZS]

• Closed-loop control

• Forced exploration in unknown MDP

• Backdoor RL
Outline

• Poisoning: from supervised learning to RL
• Open-loop control: simulating another MDP
 • May poison r^\dagger, a^\dagger, or transition s_{t+1}^\dagger [RRDZS]
• Closed-loop control
• Forced exploration in unknown MDP
• Backdoor RL
Open vs. Closed-Loop Control

- So far the attacker uses open-loop control:
 - Maintain an MDP M^\dagger whose unique optimal policy is π^\dagger
 - M^\dagger is not adaptive to agent’s internal learning state (e.g. Q-table)
 - Pro: applicable to any RL learner
 - Con: can be slow in forcing π^\dagger

- Closed-loop control: with a whitebox agent, can adapt poisoning based on agent internal state
Example: Fast Adaptive Attack (FAA)

- Require: π^\dagger differs from π on only $k = O(\log S)$ states $s_1 \ldots s_k$

- For $i = 1 \ldots k$ (s_1 is the farthest from the initial states, s_k nearest)
 - Poison r^\dagger to force navigation policy ν_i: guides agent to s_i, and set $\pi^\dagger(s_i)$
 - Invariance: does not change $\pi^\dagger(s_1) \ldots \pi^\dagger(s_{i-1})$

- This requires attacker to know agent’s Q-table Q_t at each round
Example: Fast Adaptive Attack (FAA)

- **Pro:** number of rounds Q_t does not induce π^\dagger is $O(poly(S))$
 - Open-loop control can be $O(e^S)$

- **Cons:**
 - Requires whitebox agent
 - The attacks r_t^\dagger as seen from the agent are non-stationary; perhaps easier to detect
Outline

• Poisoning: from supervised learning to RL

• Open-loop control: simulating another MDP
 • May poison $r^{†}$, $a^{†}$, or transition $s_{t+1}^{†}$ [RRDZS]

• Closed-loop control

• Forced exploration in unknown MDP

• Backdoor RL
The Issue with Unknown MDP

• Everything up to now (open/closed-loop, attack \(r, a, s_{t+1} \)) requires the attacker to know the environment MDP \(M \)

• If attacker does not know \(M \) it cannot compute \(A^\pi \dagger \), and thus cannot form targeted attacks

• But that is the case in many applications
Forced Exploration

• Key idea:
 • First attack to force agent to heavily explore M
 • [RZZS] uses $r_t^{\dagger} \sim \text{Bernoulli}(1/2, 1/2)$
 • [LL] uses LCB on Q values
 • By observing agent, attacker builds a set \mathcal{M} of plausible MDPs
 • Design attack so that π^{\dagger} is the optimal policy in all $M \in \mathcal{M}$
Outline

• Poisoning: from supervised learning to RL

• Open-loop control: simulating another MDP
 • May poison r^\dagger, a^\dagger, or transition s_{t+1}^\dagger [RRDZS]

• Closed-loop control

• Forced exploration in unknown MDP

• Backdoor RL
Backdoor RL

- Backdoor RL has two phases:
 - Training-time poisoning phase to hide a backdoor in $\pi^{†}$
 - Test-time triggering phase to activate the backdoor in $\pi^{†}$
Training-Time Poisoning Phase

• Use any of the techniques discussed so far

• May even be easier: usually does not care about attack cost

• The target policy π^\dagger is special:

 \[\pi^\dagger(s) = \pi^*(s) \forall s \in \text{supp}(d^{\pi^*}) \] [normal operation]

 \[V^{\pi^\dagger}(s^\dagger) \ll V^*(\mu) \] on “trigger states” $s^\dagger \in \text{Tr}$

 \[\text{e.g. } a^\dagger = \pi^\dagger(s^\dagger \text{ has sticker in scene}) = \text{“hard accelerate” leading to crash} \]

 \[\text{Tr can be difficult to distinguish from } \text{supp}(d^{\pi^*}) \text{ by humans} \]
Test-Time Triggering Phase

- Agent deploys π^\dagger

- Before triggering, by definition any $s_t \in \text{supp}(d^{\pi^*})$ is a normal state

- The attacker has the ability to change s_t to $s_t^\dagger \in \text{Tr}$
 - E.g. by adding a special sticker to the scene
 - E.g. by controlling other agents to perform unusually actions

- From here on agent receives low value $V_{\pi^\dagger}(s^\dagger) \ll V^*(\mu)$
What We Covered

- Poisoning: from supervised learning to RL
- Open-loop control: simulating another MDP
 - May poison r^\dagger, a^\dagger, or transition s^\dagger_{t+1}
- Closed-loop control
- Forced exploration in unknown MDP
- Backdoor RL
Looking Ahead

• Commonalities of training-time RL attacks:
 • Require “enough” manipulation
 • Assume agent naively runs standard RL algorithms
 • Therefore, we anticipate RL defense to break these conditions.
References

• [RZZS] Rakhsha, Zhang, Zhu, Singla. Reward Poisoning in Reinforcement Learning: Attacks Against Unknown Learners in Unknown Environments. 2021

• [ZMSZ] Zhang, Ma, Singla, Zhu. Adaptive Reward-Poisoning Attacks against Reinforcement Learning. 2020